Mobile Menu

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us
  • Menu
  • Skip to primary navigation
  • Skip to main content

https://eyecro.com

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us

Preclinical Ophthalmic Contract Research

particles

Fat gives nanoparticles a fighting chance

September 7, 2012 //  by stanselb

Inhalable and thermo-responsive, fat-encased nanoparticles have been developed by researchers at the University of Sydney as possible treatment for lung cancer. The team has recently designed inhalable, targetable particles that can attack tumors but leave healthy cells undamaged, reducing the side effects of cancer treatment. The particles consist of a drug encased in a lipid 'fat' that can be …

Category: NewsTag: drug release, formulation, nanoparticles, particles, targetable

© 2023 · EyeCRO · All Rights Reserved.