Mobile Menu

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us
  • Menu
  • Skip to primary navigation
  • Skip to main content

https://eyecro.com

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us

Preclinical Ophthalmic Contract Research

Interim results from clinical trial demonstrate safety of cell-based therapy for retinitis pigmentosa

August 4, 2016 //  by stanselb

Regenerative medicine company jCyte and the Sue & Bill Gross Stem Cell Research Center at the University of California, Irvine report that their investigational therapy for retinitis pigmentosa (RP) has demonstrated a favorable safety and tolerability profile in an ongoing Phase I/II clinical trial.  The cell-based approach taken is intended to rescue sick and dying retinal photoreceptor cells (rods, cones) in the diseased retina.

Read the entire article here.

Category: NewsTag: ophthalmic disease, rescue retinal photoreceptors, retina, retinitis pigmentosa, RP

Previous Post: « Investigator-Sponsored Phase 2 Study Results Show pSivida’s Medidur® Fully Controlled Uveitis for Two Years with No Recurrence of Disease While Visual Acuity Continued to Improve
Next Post: Curing blindness by repairing corneas with invisible films »

© 2023 · EyeCRO · All Rights Reserved.