Mobile Menu

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us
  • Menu
  • Skip to primary navigation
  • Skip to main content

https://eyecro.com

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us

Preclinical Ophthalmic Contract Research

New Skin Patch Monitors Glucose and Delivers Diabetes Drugs

March 10, 2017 //  by stanselb

People with diabetes need to closely monitor their blood glucose levels multiple times every day, usually using a device that pricks their finger for a blood test to assess whether they need insulin shots or other drugs. Since blood collection and shots can be painful, not all patients do it as regularly as they need to—which can lead to dangerous fluctuations in their blood glucose levels.

Now, researchers in Korea have just developed a wearable, and potentially disposable, glucose monitoring and drug-delivery system that uses sweat, not blood, to determine glucose levels.

Read the entire article here.

Category: News, Top News, Top News, Top News

Previous Post: « Research points towards new blindness prevention methods in diabetic eye disease
Next Post: Serum retinol-binding protein-induced endothelial inflammation is mediated through the activation of toll-like receptor 4 »

© 2023 · EyeCRO · All Rights Reserved.