Mobile Menu

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us
  • Menu
  • Skip to primary navigation
  • Skip to main content

https://eyecro.com

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • DL-AAA Retinal Leakage
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Mitochondrial Neuropathy
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • A2E Quantification
    • Bioanalytical Detection
    • Biochemistry
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us

Preclinical Ophthalmic Contract Research

Gene-based agents for the treatment of congenital eye diseases

July 7, 2016 //  by stanselb

Pharmacologists at LMU have developed gene-based agents for the treatment of congenital eye diseases. The first of these is now undergoing a phase-I clinical trial in color-blind patients at the University Medical Center in Tübingen.

Is this approach translatable in principle to other visual disorders?

Michalakis: About 200 genes have been identified which, when mutated, lead to monogenetic visual diseases, and doubtless many more remain to be discovered. Defects in any of 50 different genes can result in retinitis pigmentosa, a degenerative disease in which specific retinal photoreceptors die. Six genes have been linked to achromatopsia, and all of them should be amenable to the approach we are using to correct for defects in the CNGA3 gene.

Read the entire article here.

Category: NewsTag: blindness, eye health, gene therapy, ophthalmic research, retinitis pigmentosa, visual acuity

Previous Post: « Roche CEO ‘sleeps better’ as risk to drugmaker’s growth recedes
Next Post: Investigator-Sponsored Phase 2 Study Results Show pSivida’s Medidur® Fully Controlled Uveitis for Two Years with No Recurrence of Disease While Visual Acuity Continued to Improve »

© 2023 · EyeCRO · All Rights Reserved.