Mobile Menu

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • Rotenone-induced Optic Neuropathy
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • Biochemistry
    • Bioanalytical Detection
    • GLP Toxicology and PK Studies
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us
  • Menu
  • Skip to primary navigation
  • Skip to main content

EyeCRO Logo

  • AboutUs_Normal-24 The EyeCRO Approach
    • About Us
    • Careers
    • Location
    • Partners
  • MiDrops MiDROPS™
  • InVivo Models
    • Allergic Conjunctivitis
    • Corneal Sensitivity
    • Corneal Wound Healing
    • Diabetic Keratopathy
    • Dry Eye Disease
    • Endotoxin induced Uveitis
    • Experimental Autoimmune Uveitis
    • Geographic Atrophy
    • Inherited Retinal Degenerations
    • Ischemia Reperfusion Injury
    • Laser-induced Choroidal Neovascularization
    • Light Damaged
    • Optic Nerve Crush
    • Oxygen Induced Retinopathy
    • Retinal Detachment
    • Retinal Vein Occlusion
    • Rotenone-induced Optic Neuropathy
    • STZ-induced Diabetic Retinopathy
    • VEGF-induced permeability
  • InVitro Capabilities
    • Biochemistry
    • Bioanalytical Detection
    • GLP Toxicology and PK Studies
    • Histology
    • Ophthalmic Imaging and Physiology
  • News News
  • ContactUs Contact Us

Preclinical Ophthalmic Contract Research

Depot Forming Injectables

Eyedrop formulations are also very dependent on the target molecule so having a formulation that works does not necessarily mean success. This is the reason we also provide an intravitreal depot forming sustained release formulation. In this case we can very easily combine the target compound with an FDA approved polymer that can be injected into the vitreous. We have observed that the formulations stay at the injection site. Over a 24 hour period the polymer diffuses away leaving behind a depot of the drug. The drug slowly diffuses from the depot to the retina and can provide a sustained delivery for several days.

© 2021 · EyeCRO · All Rights Reserved.